首页> 外文OA文献 >Time-Dependent Invariants and Green's Functions in the Probability Representation of Quantum Mechanics
【2h】

Time-Dependent Invariants and Green's Functions in the Probability Representation of Quantum Mechanics

机译:时间不变的不变量和格林函数的概率   量子力学的表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the probability representation of quantum mechanics, quantum states arerepresented by a classical probability distribution, the marginal distributionfunction (MDF), whose time dependence is governed by a classical evolutionequation. We find and explicitly solve, for a wide class of Hamiltonians, newequations for the Green's function of such an equation, the so-called classicalpropagator. We elucidate the connection of the classical propagator to thequantum propagator for the density matrix and to the Green's function of theSchr\"odinger equation. Within the new description of quantum mechanics we givea definition of coherence solely in terms of properties of the MDF and we testthe new definition recovering well known results. As an application, the forcedparametric oscillator is considered . Its classical and quantum propagator arefound, together with the MDF for coherent and Fock states.
机译:在量子力学的概率表示中,量子态由经典的概率分布即边际分布函数(MDF)表示,其时间依赖性由经典的演化方程控制。对于一大类哈密顿主义者,我们找到了格林方程的格林方程,并对其进行了明确求解,即所谓的古典传播子。我们阐明了经典传播子与密度矩阵的量子传播子以及薛定\方程的格林函数的联系。在对量子力学的新描述中,我们仅根据MDF的性质给出了相干的定义,并进行了测试。新的定义恢复了众所周知的结果,在应用中考虑了强制参量振荡器,找到了它的经典和量子传播子,以及相干态和Fock态的MDF。

著录项

  • 作者单位
  • 年度 1998
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号